ew user's Manual 1.1

francois.chevenet@ird.fr

Goals of PastView and terminology Installing and running PastView Overview of the PastView interface PastView toolboxes

- Canvas management
- Tools for analyses

File toolbox overview

- Loading data cases 1 & 2
- Nexus Import

Caribbean_Islands

AmerC

Amer

Caribbean/

160

AmerS

- Annotation format translation
- Saving graphics and annotations
- Preferences

Edit toolbox overview

- · tools for tree and annotations edition
- specific tools for tree edition
- specific tools for edition of annotations

AA toolbox overview

- compute by parsimony
- compute by maximum likelihood (marginal & joint probabilities)
- display ancestral annotations by map
- filters

T toolbox overview

- query and display of transitions
- transition maps
- transitions matrices

C toolbox overview

- display inconsistencies
- projection of others distributions of ancestral annotation

Goals of PastView and terminology

Installing and running PastView

www.pastview.org and scroll to the download and install section

Overview of the PastView interface

PastView toolboxes

Overview of the PastView interface

PastView manages multiple maps

A map is dedicated to a maximum of three sets of ancestral annotations : a set from ML marginal likelihood or import (eg NEXUS import, each node having multiple annotations with probabilities), a set from ML joint likelihood and a set from parsimony

To add a map, clic the button « + Map », to delete a map use the « - Map » menu. To re-order the map display, use the « Display » button.

To set a map as the current map, either use the « Map selection » menu or clic on the Map name (Map #1, Map #2 ...) The current map is highlight in blue

PastView toolboxes 5 families of controls:

« File » toolbox overview

	O Edit	<	*		
File	Eun	nput / C	Dutput	C	
● Lo	ad ——				
		Load tr	ee		
	Load	d annot	tations		
	Lo	ad sup	port		
• Im	port —				
	Sel	ect NE	XUS file		
		Impo	ort		
• Ar	notation	format	t ———		
	Selec	et anno	tation fi	le	
		Impo	ort		
• Sa	ve				
Save	graphic a	as SVG.			•
Save	graphic a	ns PS			•
Save	annotatio	ons			•
o Dr	eference	s ——			
• FT					•
Them	e				
Them Backg	e Iround co	olor			•
Them Backg Help	e Iround co	olor			▼ ▼

The « File » toolbox : Input/Output

Loading tree and annotations (primary annotations with or without ancestral annotations)

Importation from NEXUS format (tree, primary and ancestral annotations)

Translation of a strainsXvariables annotations matrix to a strainsXmodalities matrix

Saving graphics and annotations

Miscellaneous controls (default values for the graphical user's interface)

« File » toolbox, Load Case #1

Input/Output

Load

Load annotations...

Load support...

Import

Select NEXUS file

Load Annotations...

Load Support...

Import

Select NEXUS file

Load Support...

Import

Import

Exit

Save
 Save graphic as SVG
 Save graphic as PS...
 Save annotations

Prefere
 Theme

Background colo Help Clic the « Load tree... » button and select a tree following the Newick format. The tree is displayed in the current map (tree canvas)

2 Clic the « Load annotations... » button and select an annotation file following the PastView format (see below). In this example the annotation file contains primary annotations only.

Clic the « Load support... » button if support are available. The format follows the annotation format (see example in case #2)

Tree : newick format

HIV-1A-tree.txt ~ .84:0.00424. ((00ALAY1714:0.00000,02ALAY1696:0.03541)0.81:0.00425, (97ALAY1664:0.01327,(03ALAY1704:0.03110, ((00ALAY1705:0.00858,01ALAY1652:0.00000)0.89:0.00875, ((02ALAY1711:0.00000,02ALAY1697:0.00853)0.00:0.00000, (00GRAF5768:0.03063,00GRAF5754:0.00871)0.75:0.00480)0.89:0. 00868)0.00:0.00000)0.62:0.00442)0.79:0.00420)0.00:0.00000)0 .00:0.00000. ((01ALAY1689:0.00413,03ALAY1703:0.01753)0.88:0.00867, (03ALAY1706:0.00860, (03ALAY1662:0.00429,03ALAY1663:0.00877)0.75:0.00426)0.80:0. 00432)0.00:0.00000)0.00:0.00000)0.96:0.01745)0.00:0.00000)0 81:0.00435)0.88:0.00873)0.00:0.00000)0.74:0.00429)0.89:0.01 264)0.77:0.00447)0.00:0.00000)0.60:0.01845)0.78:0.01376)0.6 7:0.00449)0.60:0.00303)0.69:0.01023)0.88:0.04473)1.0:0.0088 5);

Annotations : CSV , primary annotations

🔴 🕘 📄 PAELAexport-HIV-1A-annotation-Region-ANNOTATI 🗸				
ID,Africa,Albania,EastEurope,Greece,WestEurope				
00ALAY1705,0,1,0,0,0				
00ALAV1705 0 1 0 0 0				
00ALAT1705,0,1,0,0,0				
00ALAY1705,0,1,0,0,0				
00ALAY1713,0,1,0,0,0				
00ALAY1713,0,1,0,0,0				
00ALAY1713,0,1,0,0,0				
00ALAY1714,0,1,0,0,0				
00ALAY1714,0,1,0,0,0				

« File » toolbox, Load Case #2

Clic the « Load tree... » button and select a tree following the Newick format. The tree is displayed in the current map (tree canvas)

Clic the « Load annotations... » button and select an annotation file with ancestral annotations, following the PastView format (see below). In this example ancestral annotations are saved by using unique IDs to put in regards node of the tree with annotations. These IDs must be used in the newick string in place of the support values (before the « : » character)

Clic the « Load support... » button if support are available. The format follows the annotation format (with IDs)

Tree : newick format with IDs

2

3

 $< \times \otimes$

- o Load

Load Tree...

Load Annotations...

Load Support...

Load tree

Load annotations

Load support.

Select NEXUS file

Impor

Select annotation file

Import

Exit

Annotation format

Save
 Save graphic as SVG
 Save graphic as PS...

Theme Background colo

Help

	PUUPAMout-TREE.txt ~
12406)8:40.444405835 3:44.84397430424741, 69277749271)21:1.932	62039)5:21.323835121638126,6:53.5 1567648856899,22:2.82872369266061
4102)20:6.6677447222 ,16:21.4137553336656	17094)17:2.028583298602598,18:14. 2)14:20.43021897058179) <mark>11:582.608</mark>
6349863194)31:5.4041 22599)27:228.4803141 18947)36:11.94907745)1:193.2635595243379	44385782047,32:8.459610020768423) 8279106,(35:17.267632291164546, 5945599)28:250.7966763308525)12:3
197584515)45:10.0476 013102,(51:85.523747 982313313)55:2.99676	, 87427107803,46:45.97004940295295) 34345193, 86510419753,56:3.9120052492733066
413524346)54:10.4439 7757)41:139.41329192	60560638288)52:74.6445749686784)5 878237.

Annotations : CSV , primary annotations and ancestral annotations (with IDs)

	PUUPAMout-ANNOTATION-BEAST.txt ~
7,1.0,0,0,0	0,0,0,0,0,0,0
8,1.0,0,0,0	0,0,0,0,0,0,0
9,1.0,0,0,0	0,0,0,0,0,0,0
10,1.0,0,0	,0,0,0,0,0,0,0,0
12 0 99995	1030000/9/9,0,0,0,0,0,0,0,0,3.440130900104024E-3,3.4401 21/268/735 2 /13700872073377E_/ 0 1 03///7088031//73E
.2.4137098	72073377F-4.0.001310299644839833.1.3792627840419295F-
13,1.0,0,0	,0,0,0,0,0,0,0
14,1.0,0,0	,0,0,0,0,0,0,0,0
15,1.0,0,0	,0,0,0,0,0,0,0
16,1.0,0,0	,0,0,0,0,0,0,0
17,1.0,0,0	,0,0,0,0,0,0,0
	, 0, 0, 0, 0, 0, 0, 0
20,1.0,0,0	. 0 . 0 . 0 . 0 . 0 . 0 . 0
22,1.0,0,0	,0,0,0,0,0,0,0
23,1.0,0,0	, 0, 0, 0, 0, 0, 0, 0
24,1.0,0,0	,0,0,0,0,0,0,0
25,1.0,0,0	,0,0,0,0,0,0,0
26,1.0,0,0	,0,0,0,0,0,0,0

10

« File » toolbox, NEXUS import

the annotations and the support

values.

« File » toolbox, annotations format translation

Select the Strains x Variables file (1) then select one of its variable to extract, in this example the « Region » variable (2), and Clic the Import button (3)

Annotation Import
1 Select Annotation file
Country
CountryCode
Region
2
Import 3

HIV-1A-annotation.txt ~
Name , Country , CountryCode , Region
'98CMAJ6932', 'Cameroon', 'CM', 'Africa'
'98CMAJ6933', 'Cameroon', 'CM', 'Africa'
'96CMAJ6134','Cameroon','CM','Africa'
'00SEAY5240','Sweden','SE','WestEurope'
'97CDAF6240','Dem.Rep.ofCongo','CD','Africa'
'97CDAF6238','Dem.Rep.ofCongo','CD','Africa'
'97CMAJ6930','Cameroon','CM','Africa'
'97CMAJ6931','Cameroon','CM','Africa'
'98CMAJ6934','Cameroon','CM','Africa'
'00GAAJ3398','Gabon','GA','Africa'
'00GAAJ3391','Gabon','GA','Africa'
'99KEAF7075', 'Kenya', 'KE', 'Africa'
'99KEAF7063', 'Kenya', 'KE', 'Africa'
'99KEAF7065', 'Kenya', 'KE', 'Africa'
'00KEAF7077', 'Kenya', 'KE', 'Africa'
'00KEAF7079','Kenya','KE','Africa'
'00KEAF7089', 'Kenya', 'KE', 'Africa'

Strains x Variables matrix

PAELAexport-HIV-1A-annotation-Region-ANNOTATI	~
ID,Africa,Albania,EastEurope,Greece,WestEurope	
00ALAY1705,0,1,0,0,0	
00ALAY1705,0,1,0,0,0	
00ALAY1705,0,1,0,0,0	
00ALAY1713,0,1,0,0,0	
00ALAY1713,0,1,0,0,0	
00ALAY1713,0,1,0,0,0	
00ALAY1714,0,1,0,0,0	
00ALAY1714,0,1,0,0,0	

Strains x Modalities matrix

« File » toolbox, saving graphics

Africa

« File » toolbox, preferences

« Edit » toolbox overview

Edition of tree AND annotations (reset, zooms, move, colors...)

Tree Edition: tree layouts, leaves graphical feature's (font, color). The controls of a menu operates at a global level. The « iconic » button controls operate on the fly to the nodes of the tree

Edition of annotation: display primary annotations in regards of the tips of the tree, display support, branches lengths (taking into account threshold values)

« Edit » toolbox Global

« Edit » toolbox

Global

Africa Albania EastEurope Greece WestEurope

Tree BG

Select an annotation to change « on the fly » the Hue value of the color associated to the annotation

Add Legend to Map **Delete Legend from Map** Add Legend to Board **Delete Legend from Board**

Tree FG Saturation and Value Piechart changes are apply to all **Bubble** annotations but in a different way according to graphical items : tree background, tree Equalize foreground, piecharts, bubble, tips labels Use the « Equalize » command to set the same S and V values to these different items

« Edit » toolbox Tree

« Edit » toolbox Annotations

Computation of ancestral annotations knowing a tree and primary annotations, by parsimony and maximum likelihood (marginal and jointed methods)

Displaying ancestral annotations

Highlight nodes with several filters

AA toolbox: compute ancestral annotations Parsimony

0.00

> M - %M 0.1

Filters

Filter

0.90

-

+

AA toolbox: compute ancestral annotations Maximun likelihood, F-81 like, marginal

File Edit AA T C	
Compute splay Ancestral Annotations	
e Compute	
Dereiment	
• ACCTRAN	
F81-IIKe	Compute
Joint scenario	
priors: tree frequencypriors: equiprob.	Parsimony
AA Tree color	
Data 🗸	
Fa	
Color	Foi-like Z
0.00	
	Joint scenario
Bg Sz ≥ 2	
▼ Pt ≥ 0.65	O priors: tree frequency
Color	
<u> 3</u>	💿 priors: equiprob.
AA Bubble	
Data 🗸 🗸	
Annotation T	
- +	
• AA PieChart	
Display 🔻	
0.00 0.90	
> M - %M 0.1	

Filters

Filter

Select the priors option

2

Click the « Max.Lik. Marginal (F81) » button, the ancestral annotations will be computed for the current tree (map)

AA toolbox: compute ancestral annotations Maximun likelihood, joint

0.00

> M - %M 0.1

Filters

Filter

0.90

•

+

File Edit AA T C	
Compute Isplay Ancestral Annotations	
Compute	
Parsimony	
ACCTRAN O DELTRAN	
F81-like	Compute
• priors: equiprob.	Parsimony
AA Tree color	• ACCTRAN O DELTRAN
Data 🗸	
Color	F81-like
0.00	
Bg	Joint scenario 2
Sz ≥ 2	
× Pt ≥ 0.65	🔄 🔿 priors: tree frequency
AA Bubble	• priors: equiprob.
Data 🗸	
Annotation 💌	
Display	
- +	
I	
• AA PieChart	
Display 🗸 🗸	

AA toolbox: displaying ancestral annotations

		<	24		
Compl	Ite	AA splav A	ncestral	C Annot	ations
p c					
- O Co	mpute -				
·····		Parsir	nony		
• ACC	TRAN		ODELTR	AN	
		F81-	like		
		Joint sc	enario		
O prior	s: tree	frequer	су		
prior	s: equip	brob.			
	Tree or	olor —			
Data	nee co				•
Fq					
		Col	or		
0.00					
-Pa					
Sz ≥		2			
× Pt ≥			0.65		
		Col	or		
• AA	Bubble				
Data					•
Annot	ation				•
Displa	у				-
	-			+	
- <u>-</u> AA	PieCha	rt —			
Displa	v				-
0.00	-				0.90
	9/14/0	1			
> M	- 76IVI [0.				
	-			+	
- Filt	ers —				
Filter					•

Note: to reset the tree color, see the « Reset » menu , tab « Edit »

-) select the family of ancestral annotation to use for highlighting the tree : parsimony, majority of marginal maximum likelihood (or Bayesian), joint maximum likelihood
- 2) Clic the « Color » button to color the tree
- 3) Adjust the threshold (only for ancestral annotation with likelihood values), the ancestral annotations with a likelihood value under this threshold value will be black color coded.

AA toolbox: displaying ancestral annotations Background color the tree

Eila	O Edit		*		
Compu	ute	splay A	ncestral	Annotati	ons
- <u> </u>	mpute -				
	mpute	Parsir	nony		
• ACC	TRAN			RAN	
		F81-	like		
		Joint sc	enario		
O prior	s: tree	frequer	су		
• prior	s: equi	orob.			
	Tree	olor —			
Data	nee co	5101			•
Fg					
		Col	or		
0.00					
Bg					
Sz ≥		2	0.05		
× Pt ≥		Col	0.65		_
Color					
AA Bubble					
Data					•
Annot	ation				-
Display 🗸					
	-			+	
🗸 🍳 AA PieChart ————————————————————————————————————					
Displa	у				•
0.00				0.	90
□ > M	- %M 0	.1			
	-			+	
[

г 🍳	Filters -	
Fil	ter	•
-		

🗧 º 🗛 Tree	e color —	
Data		•
Fg		
	Color	
0.00		
Bg		
Sz ≥	2	
× Pt ≥	0.65	2
	Color	3

For more details related to phylotype, see Searching for Virus Phylotypes Chevenet F, Jung M, Peeters M, de Oliveira T, Gascuel O. Bioinformatics (2013) Volume 29, Issue 5Pp. 561-570. set a threshold value for the Sz criteria (see below)
 set a threshold value for the Pt criteria. Pt is a probably threshold below which the node will be considered to be not annotated by an annotation

AA toolbox: displaying ancestral annotations Add « bubbles » according to ancestral annotations

Compute	
Parsimony	
ACCIRAN DELIRAN E81 like	
priors: equiprob.	🕝 🔍 🗛 Bu
. •	•
AA Tree color	Data
Data 🗸	
Color	Annotatio
0.00	
Ba	Diaplay
Sz ≥ 2	Display
▼ Pt ≥ 0.65	
Color	
Data	
- +	
A PieChart	
0.00 0.90	
> M - %M 01	

- 1) select the family of ancestral annotation (eg parsimony, maximum likelihood, etc.)
- 2) select the annotation(s) to consider
- 3) the « Display » menu enables a) to display (ON) or not (OFF) the « bubbles », b) to display a simplified view. With the simplified view, if a cluster of strains share the same annotations, only one bubble is displayed at its root
- Adjust the size of the bubbles with the « » or « + » buttons

AA toolbox: displaying ancestral annotations Add « piecharts » according to ancestral annotations

	ス 😂	
File Edit AA	ТС	
Compute splay A	Ancestral Annotations	
Compute		
Parsi	mony	
• ACCTRAN	O DELTRAN	
F81-	-like	
Joint scenario		
O priors: tree freque	ncy	
• priors: equiprob.		
AA Tree color —		
Data		
Co	lor	
0.00		
Bg Sz ≥	2	
× Pt≥	0.65	
Co	lor	
	•	
AA Bubble		
Data	. •	
Annotation	. .	
Display		
_	+	
<u></u>	·	
AA PieChart		
Display	-	
0.00	0.90	
> M - %M 0.1		
-	+	
F 9 Filters		
Filter	•	

M-%M : if two or more annotations are near the majority then the piechart is displayed. Here « near » mean a probability higher than the probability of the majority minus a percentage of it. The percentage is a user setting

- « Display » menu: display (ON) or not (OFF) the piecharts
- display a simplified view by using two thresholds. The first threshold (left) set a value for probabilities of annotations below which the annotation will be aggregated to the « black » portion of the piechart. Like this, piecharts will be restricted to higher probabilities. The second threshold (right) set a value above which, piecharts will not be displayed. These thresholds are dynamic (madifying their values will automatically updates the tree display)
- 3 filter, help to display piecharts for nodes with contentious annotations

Adjust the size of the piecharts with the « - » or « + » buttons

Δ

AA toolbox: filters

Filter

_					1
	0	<	え	♦	
File	Edit	AA	Т	С	
Comp	ute	splay A	Ancestral	Annotat	ions
o Co	mpute -				
		Parsi	mony		
• ACC	TRAN			RAN	
		F81-	like		
		Joint s	cenario		
O prio	rs: tree	freque	ncy		
• prio	rs: equi	orob.			
_	Tree co	olor —			
Data					•
Fg					
		Co	lor		
0.00					
Bg					
Sz ≥			2		
× Pt ≥	:	0.5	0.65		
<u> </u>					
- • AA	Bubble				
Data		<u> </u>			-
Annot	ation				~
Disale					_
Displa	iy				
	-			+	
AA	PieCha	irt —		•	
Displa	iy				
0.00	_			0.	90
□ > M	- %M 0	.1		•	
	-			+	
- • Filt	ters —				
Filter					-

Indentify nodes with particular characteristics regarding their ancestral annotations

 $A(n) \neq A(father) (majo.)$ $A(n) \neq A(father) (pupko)$

Symbol	1
Reset	 Filter symbol Type Rectangle
Set the symbol used to highlight nodes	 Oval Text Arrow
2 Select a filter	 Size/Position & Color 10 10
	Color

In this example, ancestral annotations have been computed (maximum likelihood F81, marginal). The « > M-∂/2 » filter is applied, it highlights nodes (green rectangles) having one or more ancestral annotation(s) having a probability near the majority one. First, the standard variation (∂) of all the probabilities of the ancestral annotations presented at a node is computed. Then if a node has at least one ancestral annotation with a probability superior to the probability of the majority one minus half the standard variation, then the node is highlight

« T » toolbox, transitions

File Edit AA T C Transitions of Ar tral Annotations • Transitions Query nsert Oata Search < > Edit	
Transitions of Articital Annotations Transitions Query nsert Data Search < < > > Edit	
nsert Data Search I< < > > Edit	
nsert Data Search I< > > I	
Data Search	
Search	
< < > > Edit ▼	
Edit	
	•
 Transitions Map 	
Data 🔹	
Full options 🔻	
Compressed options	
Save (Newick)	_
ର୍ ଭ୍ ବ୍ ଭ୍	
ଟ୍ କ୍ ବ୍ କ୍	
 Transitions Matrix Data 	-
 Transitions Matrix Data Display 	•
 Transitions Matrix Data Display 	•

highlight tree transition paths knowing a sequence of annotations

transition map = a summarized view of all the transitions in the tree

crossing matrices of annotation with computation of several indices

« T » toolbox, transition query

How to highlight tree transition paths knowing a

sequence of annotations

Transitions Query

Transitions Map

Full

Compressed

€

Ð

Transitions Matrix

Search

Insert

Data

|<

Edit

Data

Q

Q°

Data Display

« T » toolbox, transition map

Transitions Matrix

-

▼

Data

Display

transition map = a synthetic view of all the transitions in the tree Phylogenetic

Eas

Wes 4

« T » toolbox, transition map

Transition map layouts

Mono layout count every transitions in the tree, edges of the map can be proportional to the branch lengths of the tree. Piecharts with a percentage display the proportion of subsequents strains annotated with the same ancestral annotation. Mono map can be computed « on the fly » knowing a depth level selected by the user (drag a gauge)

Multi layout are more synthetic views. Node can display the number of the same transition (but at a different position and/or a different depth level in the tree)

Pointing a node from a transition map highlight the corresponding subparts of the tree

« T » toolbox, matrices of transitions

Select the family of data to be used to compute the matrices of transitions

Select the transition matrix to compute, it will be displayed in the current view

- The matrix « Count » counts the number of transitions from the annotation « a » to the annotation « b ».
 - The matrix « Relative rate » count-based estimation of the relative transition rate, where raw counts are normalized and divided by state priors :

Matrices of transitions are matrices crossing annotations and giving several indices between couple of annotations

« C » toolbox

« C » toolbox

In this example, the primary annotations have been used to compute (PastView) three sets of ancestral annotations: ML marginal majority, ML joint and Parsimony (DELTRANS). If the ancestral annotations are the same between the three data sets for a node, the tree is foreground color-coded according to the color associated to the annotation. If not, colored bubbles are drawn showing the inconsistencies between the methods (the white/grey color indicates ambiguities for the parsimony method)

« C » toolbox

Adjust the size of the bubbles with the « - » or « + » buttons

In this example, the primary annotations have been used to compute ML marginal and Bayesian ancestral annotations (import from a NEXUS output). For each node, If the ancestral annotations are the same (the majority ones) between the two methods, the tree is foreground color-coded according to the color associated to the annotation. If not, piecharts are drawn showing the inconsistencies.

Appendix

Computing the marginal posterior probabilities of every state for each of the tree nodes (F-81-like) and the joint ancestral scenario with the maximal posterior probability

Computing the marginal posteriors probabilities (F81-like)

Probability of changes along a branch of length t is expressed as:

PC(i→j/l)=(1-e^{-µl}) $\pi_{j \text{ if } j \neq i}$ = e^{-µl} + (1-e^{-µl}) $\pi_{i \text{ otherwise}}$

With πi equilibrium frequency (priors) user supplied, roughly estimated from the state frequencies observed at the tree tips or equal probability

with $\mu=1/(1-\sum_{i}\pi_{i}^{2})$ (normalization factor)

Computing the marginal posteriors probabilities is done in four steps:

- 2 bottom-up computation of 'down' conditional likelihoods (post-order recursion using the pruning algorithm
- **3** top-down computation of 'up' conditional likelihoods (pre-order recursion)

4 computation of the states marginal posterior probabilities knowing the 'down' and 'up' conditional likelihoods

Computing the marginal posteriors probabilities (F81-like)

tree rescaling. maximize the tree likelihood to find the scaling factor with iterative calls to a Pruning (bottom-up) with a gold number or Brent search. The tree is then rescaling with the found scaling factor. G, D = Left and Right descendant respectively

 $L(T) = \sum_{i} \pi_{i} Ldown(T/i)$ $Ldown(T/i) = \left[\sum_{j} PC(i \rightarrow j/l_{g}) Ldown(G/j) \right] * \left[\sum_{j} PC(i \rightarrow j/l_{d}) Ldown(D/j) \right]$ Ldown(F/i) = 1 if the tip F is annotated with i, 0 otherwise

2 bottom-up computation of 'down' conditional likelihoods (post-order recursion using the pruning algorithm

3 top-down computation of 'up' conditional likelihoods (pre-order recursion) The 'up' likelihood of G is calculated from the 'down' likelihood of D and the 'up' likelihood of their common father, and vice versa.

$$Lup(G/i) = \left[\sum_{j} PC(i \rightarrow j/l_g) Lup(T/j) \left[\sum_{k} PC(j \rightarrow k/l_d) Ldown(D/k)\right]\right]$$
$$Lup(D/i) = \left[\sum_{j} PC(i \rightarrow j/l_d) Lup(T/j) \left[\sum_{k} PC(j \rightarrow k/l_g) Ldown(G/k)\right]\right]$$
$$Lup(T/j) = 1 \text{ si } T \text{ is the whole tree}$$

computation of the states marginal posterior probabilities knowing the 'down' and 'up' conditional likelihoods

Post(N,i)=
$$\pi_i$$
 Ldown(N/i) Lup(N/i) / L(T)
L(T)= $\sum_i \pi_i$ Ldown(N/i) Lup(N/i)

The pruning algorithm (Felsenstein 1981)

 $L(T) = \sum_{i} \pi_{i} Ldown(T/i)$ $Ldown(T/i) = \left[\sum_{j} PC(i \rightarrow j/l_{g}) Ldown(G/j)\right] \star \left[\sum_{j} PC(i \rightarrow j/l_{d}) Ldown(D/j)\right]$ Ldown(F/i) = 1 if the tip F is annotated with i, 0 otherwise

LnB = (LgA*PC(B->A)+LgB*PC(B->B))*(LdA*PC(B->A)+LdB*PC(B->B))

Computing the joint scenario, example (Yang, 1995) (Pupko, 2000) Tree scaling, then : Up + Down

riors		
A =	<mark>0.4</mark> (2/5)	
5 / =	<mark>0.6</mark> (3/5)	

Ρ

Probabilities of change

PC	™А	V
A	0.7	0.3
V	0.45	0.55

If 7 is A L7= 0.7x0.7x0.147= 0.072 If 7 is V L7= 0.3x0.7x0.1361= 0.02856 If 8 is V If 7 is A L7= 0.45x0.7x0.147= 0.0463

If 7 is V L7= 0.55x0.45x0.1361= 0.03366

If 7 is A If 6 is A L6= 0.7x0.3x0.7= 0.147 Α If 6 is V L6= 0.3x0.55x0.45= 0.07425 If 7 is V If 6 is A L6= 0.45x0.3x0.7= 0.0945

If 6 is V L6= 0.55x0.55x0.45= 0.1361

If 8 is V L8 = 0.55x0.55x0.0463x0.6=0.0084

Computing the joint scenario, example (Yang, 1995) (Pupko, 2000) Tree scaling, then : Up + Down

